
Contrast Enhancement of Color Images Using a
Multi-Objective Optimization Framework
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Abstract. Contrast Enhancement (CE) is a fundamental preprocessing
step for several applications, and also for further decision making pro-
cesses related. This task has been addressed successfully for gray-scale
images using pure Multi-Objective Optimization (MOO); nevertheless,
difficulties arise when performing MOO for color images. This paper
presents a pure MOO approach with automatic CE for color images,
taking into account evaluation metrics better suited for color spaces,
which are designed to achieve the improvement in contrast and also
control the noise introduced because of the contrast variation seen during
the process. A series of experiments were conducted in order to assess
the correctness of this approach, and the results consist of a set of con-
trast enhanced images, with different compromise rates between contrast
modification and noise introduction. It appears that the results obtained
are promising, and the numeric values of the optimization metrics are
analyzed using correlation tables and discussed using the Pareto Front
obtained from these values.

Keywords: Multi-objective optimization, contrast enhancement,
MOPSO, CLAHE, color spaces.

1 Introduction

Contrast Enhancement (CE) is a fundamental preprocessing step for several
image processing applications such as Medical Imaging (Computer Aided Diag-
nosis [2], Computerized Tomography Imaging [8], Magnetic Resonance Imaging
[4] and others), Remote Sensing [11], and so on.

Techniques based on Histogram Equalization have been extensively proven
to be valid when addressing CE problems [5,15,18,10]. Meta-Heuristics such as
Mono-Objective Optimization, and also Multi-Objective Optimization (MOO)
have been tested successfully in order to solve CE problems on gray-scaled images
[12,13,16,7]. However, MOO applied to color images poses additional difficulties
because it is necessary to preserve color information present therein.
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Our proposal consist in testing images transformed from RGB color space
to Y CbCr in order to perform MMO-based CE.

Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied over
the Y channel of the test image in order to modify contrast, and the resultant
image is transformed back to RGB in order to evaluate the similarity between
color channels.

The rest of the paper is organized as follows: in Section 2, the fundamental
concepts for this work are presented, in Section 4 the CE problem is posed,
and our approach is presented, in Section 5 the results achieved are discussed in
detail, and finally in 6 some final points are remarked.

2 Theoretical Framework

This sections presents a brief introduction of the concepts used in the paper.

2.1 Color Spaces Adopted

Original images are represented using the RGB color space [6], which is a N ×
M × 3 array of color pixels. Every color pixel is represented by an element
[zr zg zb] of the array previously mentioned, where zr, zg, zb are the red, green,
and blue components of the color pixel in a specific location. Original images are
then transformed to the Y CbCr color space [6], which is a representation widely
used in digital video.

The main advantage is that the Y component here represents the luminance
information of the image, meanwhile the Cb component represents a difference
between the blue component and a reference value, and the Cr component is the
difference between the red component and a reference value. Another important
advantage of this representation is that the conversion from RGB, and back to
RGB is straightforward: YCb

Cr

 =

 16
128
128

 +

 65.481 128.553 24.966
−37.797 −74.203 112.000
112.000 −93.786 −18.214

RG
B

 , (1)

RG
B

 =

 Y + 1.402 · (Cr − 128)
Y − 0.34414 · (Cb − 128)− 0.71414 · (Cr − 128)

Y + 1.772 · (Cb − 128)

 . (2)

2.2 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Contrast Limited Adaptive Histogram Equalization (CLAHE) [18], is a well
known CE algorithm, designed for broad applicability in the context of digital
image processing. CLAHE is a variation of the Adaptive Histogram Equalization
(AHE)[15], CE algorithm. In AHE, an image is processed transforming each pixel
using a function based on the histogram of its surrounding pixels, defined by a
Contextual Region (Rx,Ry). CLAHE limits the CE by clipping the resultant
histogram based in a coefficient called Clip Limit C .
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2.3 Multi-Objective Particle Swarm Optimization (MOPSO)

Multi-Objective Particle Swarm Optimization (MOPSO) [14] is a widely known
metaheuristic algorithm. It is a bio-inspired metaheuristic which mimics the
social behavior of bird flocking. In PSO, every potential solution of the problem
being approached is called a particle and the actual population of solutions is
called a swarm. Every particle #»x performs a search within a search space Ω, and
for every generation t, every solution #»x is updated according to:

#»x i(t) = #»x i(t− 1) + #»v i(t), (3)

where #»v is a factor known as the velocity, and is given by:

#»v i(t) = w · (t− 1) + C1 · r1 · ( #»x pi − #»x i) + C2 · r2 · ( #»x gi − #»xi), (4)

where #»x pi is the best solution that #»x i has found so far, #»x gi is the best solution
that the entire swarm has found at the current iteration, w is a coefficient known
as the inertia weight, which controls the search speed rate of PSO; r1 and r2 are
random numbers between [0, 1]. Finally, C1 and C2 are coefficient which control
the weight between global and local particles during the search.

In MOPSO, a constriction coefficient χ is adopted in order to control the
particle’s velocity, as described below:

χ =
2

2− ϕ−
√
ϕ2 − 4ϕ

, (5)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4,

0, if C1 + C2 ≤ 4.
(6)

Furthermore, the velocity in MOPSO is bounded by the following velocity
constriction equation:

vi,j(t) =


deltaj if vi,j(t) > deltaj ,

−deltaj , if vi,j(t) ≤ deltaj ,
vi,j(t), otherwise,

(7)

where

deltaj =
upper limitj − lower limitj

2
. (8)

2.4 Entropy of Image

Entropy of image [9], is a metric that measures how much information is repre-
sented within an image. Entropy and contrast are closely related to the intensity
distribution of images, so this metric is able to assess contrast variations as a
consequence of image transformations.
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First, we need to define the Histogram of intensities of an image H as follows:
Let c1, c2, ..., cn the count of pixels with intensity i1, i2, ..., in respectively, and
also let:

pi =
ci
N
,

n∑
i=1

ci = N, i = 1, 2, ..., n, (9)

where N is the total sum of pixels shown in an image I and n is every intensity
level representable by the color space of I. Then H is defined as a probability
distribution in which every pi represents the probability of occurrence of an
intensity i. Then, Entropy of Image is defined as below:

H = −
n−1∑
i=0

pilog2(pi) H ∈ {0, ..., log2(n)}. (10)

2.5 Structural Similarity Index

The Structural Similarity Index (SSIM) [17] is a well known metric that mea-
sures important image’s attributes such as Luminance, Contrast and Structure.
SSIM main aim is to measure the distortion added to the image as a consecuence
of the CE proccess. SSIM is calculated by windows, so given two images Ix and
Ty which represent an original and an enhanced image, respectively, the SSIM
index is defined as below:

SSIM(I, T ) =
(2µIxµTy + E1)(2σIxTy + E2)

(µ2
Ix

+ µ2
Ty

+ E1)(σ2
Ix

+ σ2
Ty

+ E2)
, SSIM ∈ [0, 1], (11)

where µIx , µTy
is the intensity averages of Ix and Ty, respectively; σ2

Ix
and σ2

Ty

are the intensity variances for Ix and Ty, respectively; σIxTy
is the covariance

between Ix and Ty intensities. E1 = (K1L
2), where L is the dynamic range of

intensities of image’s pixels, and K1 � 1 is a small constant; E2 = (K2L)2,
and K2 � 1; both E1 and E2 are constants used to stabilize division when
denominator is close to zero.

3 Formulation of the Problem

Given an color input image I, with M×N pixels, and a vector #»x = (Rx,Ry,C ),
where Rx and Ry are contextual regions and C is the Clip Limit, a set of non-
dominated solutions X , which simultaneously maximize the objective functions
f1, f2, f3, f4:

F = [f1(I, #»x ), f2(I, #»x ), f3(I, #»x ), f4(I, #»x )]; f1, f2, f3, f4 ∈ [0, 1], (12)

where:
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– Ty is the enhanced intensity map, when applying #»x to Iy; this is: Ty =
CLAHE( #»x , Iy). Ty and Iy are the Y channel in the Y CbCr representation
of I and T , respectively,

– f1(I, #»x ) = H (T )
log2L

is the normalized Entropy of the enhanced intensity map

Ty, as described above,
– f2(I, #»x ) = SSIM(IR, TR) is the SSIM measure between IR and TR. IR and
TR are the R channel of the RGB representation of I and T , respectively,

– f3(I, #»x ) = SSIM(IG, TG) is the SSIM measure between IG and TG. IG and
TG are the G channel of the RGB representation of I and T , respectively,

– f4(I, #»x ) = SSIM(IB , TB) is the SSIM measure between IB and TB . IB and
TB are the B channel of the RGB representation of I and T , respectively.

Bounded to:

– Rx ∈ [2, ...,M ] for the N numbers,
– Ry ∈ [2, ..., N ] for the N numbers,
– C ∈ (0, ..., 1] for the R numbers.

4 Proposal

Algorithm 1 MOPSO-CLAHE
Require: Input image I, amount of particles Ω, iterations tmax

1: Initialize ω, c1, c2, t = 0, lower limit1, lower limit2, lower limit3, upper limit1, upper limit2,
upper limit3, X

2: while t < tmax do
3: for every i-th particle do
4: Calculate new velocity −→vi t of the particle using equations (4) and (7)
5: Calculate new particle position −→xi

t using expression (3)
6: T = CLAHE(−→xi

t, I)
7: ft

i = f(I,−→xi
t)

8: if −→xi � −→xpi
then

9: replace −→x pi
by −→xi

t

10: end if
11: if −→xi � −→xgi

then

12: Update the Pareto set X
13: end if
14: t = t + 1
15: end for
16: end while
Ensure: X

Algorithm 1 shows how Color Multi-Objective PSO-CLAHE (CMOPSO−
CLAHE) is implemented, in order to tune parameters of CLAHE. The parame-
ters received by CLAHE are stored by a particle #»x = (Rx,Yx,C ), the original
image I is transformed to its Y CrCb representation,and #»x is applied to the Y
channel, in order to obtain a YT intensity map, which is used to transform back
to RGB, to obtain the resulting image T .

The resulting images are evaluated according to the metrics HY , SSIMR,
SSIMG, SSIMB , which are the entropy of resulting images measured in the Y
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channel of the Y CrCb representation of these, and SSIMR, SSIMG, SSIMB

are the SSIM measures for original and resulting images using the R,G,B
channels of the RGB representations of these. The non-dominated solutions are
then stored in the Pareto set. CMOPSO − CLAHE proccess is repeated until
a criterion stop is reached.

5 Results and Discussion

Table 1. Initial parameters for CMOPSO-CLAHE.

Parameter Value Parameter Value

lower limitRx 2 upper limitRx M/2

lower limitRy 2 upper limitRy N/2

lower limitC 0 upper limitC 0.5

Ω 100 tmax 100

c1 min 1.5 c1 max 2.5

c2 min 1.5 c2 max 2.5

r1 min 0.0 r1 max 1.0

r2 min 0.0 r2 max 1.0

Tests were performed using 8 color images from the available dataset1. Table
1, shows how SMPSO was configured for the tests. SMPSO implementa-
tion is available at [3], meanwhile the implementations for CLAHE, H and
SSIM are available at [1]. For every test image, 50 test were performed, and
10 non-dominated solutions were found in average. From Figures (5,5,5), it is
noticeable how CE is achieved; there is also a compromise relation between H
and SSIMR, SSIMG, SSIMB .

It is noteworthy from Figure (5) how higher values of H degrade ima-
ges severely, so it is necessary to find the correct balance between H and
SSIMR, SSIMG, SSIMB . In Figure (5) it is shown the resultant image en-
hanced using the proposal described in [12]; it is noticeable that the resultant
image does not achieve good CE; this is because the mono-objective approach
does not use color information properly, and this result is the same for other test
images.

In Table 3, the non-dominated metric coefficients are shown, and in the
last line it is shown the metric coefficients for image (5), enhanced using the
mono-objective proposal. Although its metrics seem to fall in the Pareto Front,
the visual information obtained is not enough to state that the mono-objective
proposal is feasible for color images. These results are similar for every test image
used.

1 http://www.vision.caltech.edu/archive.html
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(a) Original Image. HY = 0.207231,
SSIMR = 1, SSIMG = 1, SSIMB = 1.

(b) Enhanced Image. HY = 0.611275,
SSIMR = 0.00897331, SSIMG =
0.00823064, SSIMB = 0.00851013.

(c) Enhanced Image. HY = 0.0350595,
SSIMR = 0.416776, SSIMG = 0.403636,
SSIMB = 0.417654.

(d) Enhanced Image using [12]. HY =
0.788927, SSIMR = 0.000204143, SSIMG =
0.0000526475, SSIMB = 0.0000518143.

Fig. 1. Original and resultant images of House 1.

Table 2. Correlation table between metrics. Data was taken from Table 3.

Metrics HY SSIMR SSIMG SSIMB

HY 1

SSIMR -0.9826 1

SSIMG -0.9823 0.9999 1

SSIMB -0.9826 0.9999 0.9999 1

Figure (2), shows the Pareto Front created from the data in Table 3, and
also Table 2 shows the correlation between metrics, analyzed from the results
in Table 3. It is remarkable that there is a strong positive correlation between
SSIMR, SSIMG and SSIMB ; and there is a negative correlation between the
previously mentioned metrics and HY .

These correlations indicate that the channels R,G,B of images are directly
affected by the process that modifies Y channel (see Algorithm (1)). This also
indicates that CE of color images can be posed as a bi-objective optimization
problem, using only HY and SSIM applied over Y channel.
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Table 3. Metric coefficients obtained using our approach for some non-dominated
results from image in Figure (1), and the coefficients obtained using the approach of
[12], shown in the last line.

HY SSIMR SSIMG SSIMB

Result 1 0,455146 0,9844962 0,9859005 0,9850636

Result 2 0,341423 0,99448887 0,99505806 0,99470544

Result 3 0,9574285 0,605344 0,619333 0,60158

Result 4 0,9634576 0,598325 0,611372 0,597308

Result 5 0,9649405 0,583224 0,596364 0,582346

Result 6 0,388725 0,99102669 0,99176936 0,99148987

Result 7 0,9657106 0,579052 0,591965 0,578109

Result Mono 0,211073 0,999795857 0,9999473525 0,9999481857

Fig. 2. Pareto front drawn using data from Table 3.

6 Conclusion

A Multi-Objective approach for Contrast Enhancement of color images is presen-
ted, which takes into account intensity and color information as Multi-Objective
metrics. This approach achieves several resultant images, with different com-
promise rates between contrast and structural-similarity, in order to maximize
information available for further analysis.

The authors are still performing test with similar images found in the data-
base. As future work, it would be useful to analyze the parameters used for the
meta-heuristics, the use of non-marginal metrics to assess the resultant images
obtained with the approach, and perform tests posing CE of color images as a
bi-objective optimization problem.
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